Home
Class 12
MATHS
Find the range of f(x), where f(x)=cos(s...

Find the range of f(x), where `f(x)=cos(sin(In(x^2+e)/(x^2+1)))+sin(cos(In(x^2+e)/(x^2+1))).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos(\sin(\ln(\frac{x^2 + e}{x^2 + 1}))) + \sin(\cos(\ln(\frac{x^2 + e}{x^2 + 1}))) \), we will break down the problem step by step. ### Step 1: Simplify the inner function First, we need to analyze the expression \( \ln\left(\frac{x^2 + e}{x^2 + 1}\right) \). **Hint:** To simplify, consider the behavior of the function as \( x \) approaches 0 and infinity. ### Step 2: Find the limits of \( \frac{x^2 + e}{x^2 + 1} \) - As \( x \to 0 \): \[ \frac{x^2 + e}{x^2 + 1} = \frac{0 + e}{0 + 1} = e \] - As \( x \to \infty \): \[ \frac{x^2 + e}{x^2 + 1} = \frac{x^2(1 + \frac{e}{x^2})}{x^2(1 + \frac{1}{x^2})} \to 1 \] Thus, the function \( \frac{x^2 + e}{x^2 + 1} \) ranges from 1 to \( e \). ### Step 3: Find the range of \( \ln\left(\frac{x^2 + e}{x^2 + 1}\right) \) Now, we need to find the range of \( \ln(t) \) where \( t \) ranges from 1 to \( e \): \[ \ln(1) = 0 \quad \text{and} \quad \ln(e) = 1 \] Thus, the range of \( \ln\left(\frac{x^2 + e}{x^2 + 1}\right) \) is \( [0, 1] \). ### Step 4: Analyze \( \sin \) and \( \cos \) functions Next, we need to evaluate: - \( \sin(\ln(t)) \) where \( t \in [1, e] \) - \( \cos(\ln(t)) \) where \( t \in [1, e] \) **Hint:** Remember that the sine function is increasing in the interval \( [0, 1] \) and the cosine function is decreasing. ### Step 5: Find the range of \( \sin(\ln(t)) \) Since \( \ln(t) \) ranges from 0 to 1: \[ \sin(0) = 0 \quad \text{and} \quad \sin(1) \approx 0.8415 \] Thus, the range of \( \sin(\ln(t)) \) is \( [0, \sin(1)] \). ### Step 6: Find the range of \( \cos(\ln(t)) \) For \( \cos(\ln(t)) \): \[ \cos(0) = 1 \quad \text{and} \quad \cos(1) \approx 0.5403 \] Thus, the range of \( \cos(\ln(t)) \) is \( [\cos(1), 1] \). ### Step 7: Combine the results Now we can evaluate \( f(x) \): \[ f(x) = \cos(\sin(\ln(t))) + \sin(\cos(\ln(t))) \] We need to find the combined range of these two functions. **Hint:** Use the extreme values from the ranges of \( \sin \) and \( \cos \) to find the overall range of \( f(x) \). ### Step 8: Determine the final range The minimum value occurs when both \( \sin \) and \( \cos \) are at their minimum values: - Minimum of \( f(x) \) is \( 0 + \sin(\cos(1)) \). - Maximum of \( f(x) \) is \( \cos(0) + \sin(1) = 1 + \sin(1) \). Thus, the range of \( f(x) \) is: \[ \left[\sin(\cos(1)), 1 + \sin(1)\right] \] ### Final Answer: The range of \( f(x) \) is \( \left[\sin(\cos(1)), 1 + \sin(1)\right] \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x) = (1)/(2 sin x + 5) .

Find the range of f(x)=cos^2x+sec^2x .

Find the range of f(x)=cos^4x+sin^2x-1 .

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-sinx+1.

Find the domain of f(x)=2cos^(-1)2x+sin^(-1)x .

Find the domain and range of f(x)=(1)/(2-sin3x).

Find the range of f(x)=sqrt(sin(cos x))+sqrt(cos(sin x)) .