Home
Class 12
MATHS
Let f:[1//2, infty) rarr [3//4, infty), ...

Let `f:[1//2, infty) rarr [3//4, infty), " where " f(x)=x^(2)-x+1`. Find the inverse of f(x). Hence, solve the equation `x^(2)-x+1=1/2+sqrt(x-3/4)`.

Text Solution

Verified by Experts

The correct Answer is:
x=1
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.

If f:[0,infty) rarr [0,infty) " and " f(x)=x/(1+x) , then f is

Let f:[-pi//2,pi//2] rarr [-1,1] where f(x)=sinx. Find whether f(x) is one-one or not.

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

Let f(x)=x^(2)-x+1, AA x ge (1)/(2) , then the solution of the equation f(x)=f^(-1)(x) is

Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3) , if f^(-1)(x) is inverse of f(x) then the number of solution of the equation f(x)=f^(-1)(x) are

If f:[1, infty) rarr [2, infty] is given by f(x)=x+1/x," find " f^(-1)(x) (assume bijection).

Find the inverse of the function: f(x)={x^3-1, ,x<2x^2+3,xgeq2

Let f(x)=2x+1. AA x in R , then the solution of the equation f(x)=f^(-1)(x) is

If f(x)=1-4x , and f^(-1)(x) is the inverse of f(x), then f(-3)f^(-1)(-3)=