Home
Class 12
MATHS
The range of the function f(x) = sin^(-1...

The range of the function `f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2]`, where [ . ] denotes the greatest integer function.

A

`{(pi)/2,pi}`

B

`{0,(pi)/2}`

C

`{pi}`

D

`(0,(pi)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}\left[\lfloor x^2 + \frac{1}{2} \rfloor\right] + \cos^{-1}\left[\lfloor x^2 - \frac{1}{2} \rfloor\right] \), we will analyze the components of the function step by step. ### Step 1: Determine the values of \( x^2 \) Since \( x^2 \) is always non-negative, we have: \[ x^2 \geq 0 \] ### Step 2: Analyze the terms \( \lfloor x^2 + \frac{1}{2} \rfloor \) and \( \lfloor x^2 - \frac{1}{2} \rfloor \) 1. **For \( \lfloor x^2 + \frac{1}{2} \rfloor \)**: - When \( x^2 = 0 \), \( \lfloor 0 + \frac{1}{2} \rfloor = \lfloor 0.5 \rfloor = 0 \) - As \( x^2 \) increases, \( x^2 + \frac{1}{2} \) will take values from \( 0.5 \) to \( \infty \). - Therefore, \( \lfloor x^2 + \frac{1}{2} \rfloor \) will take values starting from \( 0 \) and can go up to any integer \( n \) as \( x^2 \) increases. 2. **For \( \lfloor x^2 - \frac{1}{2} \rfloor \)**: - When \( x^2 = 0 \), \( \lfloor 0 - \frac{1}{2} \rfloor = \lfloor -0.5 \rfloor = -1 \) - As \( x^2 \) increases, \( x^2 - \frac{1}{2} \) will take values from \( -0.5 \) to \( \infty \). - Therefore, \( \lfloor x^2 - \frac{1}{2} \rfloor \) will take values starting from \( -1 \) and can go up to any integer \( n \). ### Step 3: Determine the possible values of the floor functions - \( \lfloor x^2 + \frac{1}{2} \rfloor \) can take values \( 0, 1, 2, \ldots \) - \( \lfloor x^2 - \frac{1}{2} \rfloor \) can take values \( -1, 0, 1, 2, \ldots \) ### Step 4: Calculate the range of \( f(x) \) 1. **Case 1**: When \( \lfloor x^2 + \frac{1}{2} \rfloor = 0 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = -1 \): \[ f(x) = \sin^{-1}(0) + \cos^{-1}(-1) = 0 + \pi = \pi \] 2. **Case 2**: When \( \lfloor x^2 + \frac{1}{2} \rfloor = 1 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = 0 \): \[ f(x) = \sin^{-1}(1) + \cos^{-1}(0) = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] 3. **Case 3**: When \( \lfloor x^2 + \frac{1}{2} \rfloor = 1 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = -1 \): \[ f(x) = \sin^{-1}(1) + \cos^{-1}(-1) = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] 4. **Case 4**: When \( \lfloor x^2 + \frac{1}{2} \rfloor = 2 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = 0 \): \[ f(x) = \sin^{-1}(2) + \cos^{-1}(0) \text{ (not valid since } \sin^{-1}(2) \text{ is undefined)} \] ### Conclusion After analyzing all cases, we find that the only valid output of the function is \( \pi \). Thus, the range of the function \( f(x) \) is: \[ \text{Range of } f(x) = \{ \pi \} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9] where where [.] denotes the greatest integer function is:

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the