Home
Class 12
MATHS
Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3ta...

Range of `f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x` is

A

`[-(3pi)/4,(7pi)/4]`

B

`[-(5pi)/2,(7pi)/2]`

C

`[-(3pi)/2,(5pi)/2]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos^{-1}(x) + 2\sin^{-1}(x) + 3\tan^{-1}(x) \), we will follow these steps: ### Step 1: Rewrite the function using known identities We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = \cos^{-1}(x) + 2\sin^{-1}(x) + 3\tan^{-1}(x) = \left(\frac{\pi}{2} - \sin^{-1}(x)\right) + 2\sin^{-1}(x) + 3\tan^{-1}(x) \] This simplifies to: \[ f(x) = \frac{\pi}{2} + \sin^{-1}(x) + 3\tan^{-1}(x) \] ### Step 2: Determine the domain The functions \( \sin^{-1}(x) \) and \( \tan^{-1}(x) \) have the following domains: - \( \sin^{-1}(x) \) is defined for \( x \in [-1, 1] \) - \( \tan^{-1}(x) \) is defined for all real numbers, but we will restrict \( x \) to the interval \( [-1, 1] \) since \( \sin^{-1}(x) \) limits the domain. ### Step 3: Analyze the behavior of the function Both \( \sin^{-1}(x) \) and \( \tan^{-1}(x) \) are increasing functions in the interval \( [-1, 1] \). Therefore, \( f(x) \) is also an increasing function in this interval. ### Step 4: Evaluate the function at the endpoints of the interval 1. **At \( x = -1 \)**: \[ f(-1) = \frac{\pi}{2} + \sin^{-1}(-1) + 3\tan^{-1}(-1) \] \[ \sin^{-1}(-1) = -\frac{\pi}{2}, \quad \tan^{-1}(-1) = -\frac{\pi}{4} \] Thus, \[ f(-1) = \frac{\pi}{2} - \frac{\pi}{2} - \frac{3\pi}{4} = -\frac{3\pi}{4} \] 2. **At \( x = 1 \)**: \[ f(1) = \frac{\pi}{2} + \sin^{-1}(1) + 3\tan^{-1}(1) \] \[ \sin^{-1}(1) = \frac{\pi}{2}, \quad \tan^{-1}(1) = \frac{\pi}{4} \] Thus, \[ f(1) = \frac{\pi}{2} + \frac{\pi}{2} + 3 \cdot \frac{\pi}{4} = \pi + \frac{3\pi}{4} = \frac{7\pi}{4} \] ### Step 5: Determine the range Since \( f(x) \) is increasing on the interval \( [-1, 1] \), the range of \( f(x) \) is: \[ \text{Range} = \left[-\frac{3\pi}{4}, \frac{7\pi}{4}\right] \] ### Final Answer The range of \( f(x) = \cos^{-1}(x) + 2\sin^{-1}(x) + 3\tan^{-1}(x) \) is: \[ \boxed{\left[-\frac{3\pi}{4}, \frac{7\pi}{4}\right]} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

Column I, Column II Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)xi s , p. [0,pi/2]uu[pi/2,pi] Range of f(x)= cot^(-1)x+tan^(-1)x+cos e c^(-1)xi s , q. [pi/2,(3pi)/2] Range of f(x)=cot^(-1)x+tan^(-1)x+cos^(-1)xi s , r. [0,pi] Range of f(x)= sec^(-1)x+cos e c^(-1)x+sin^(-1)xi s , s. [(3pi)/4,(5pi)/4]

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot