Home
Class 12
MATHS
If f(x)=sin(sqrt([a])x) (where [.] denot...

If `f(x)=sin(sqrt([a])x)` (where [.] denotes the greatest integer function) has `pi` as its fundamental period, then

A

a=1

B

`ain{1,2}`

C

`a=9`

D

`ain[4,5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( a \) such that the function \( f(x) = \sin(\sqrt{[a]} x) \) has a fundamental period of \( \pi \). ### Step-by-Step Solution: 1. **Understanding the Period of the Sine Function**: The period of the function \( \sin(mx) \) is given by the formula: \[ \text{Period} = \frac{2\pi}{m} \] where \( m \) is a constant. 2. **Identifying \( m \)**: In our case, we have: \[ m = \sqrt{[a]} \] Therefore, the period of \( f(x) \) can be expressed as: \[ \text{Period} = \frac{2\pi}{\sqrt{[a]}} \] 3. **Setting the Period Equal to \( \pi \)**: We know from the problem statement that the period of \( f(x) \) is \( \pi \). Thus, we set up the equation: \[ \frac{2\pi}{\sqrt{[a]}} = \pi \] 4. **Solving for \( \sqrt{[a]} \)**: To eliminate \( \pi \) from both sides, we divide: \[ \frac{2}{\sqrt{[a]}} = 1 \] Multiplying both sides by \( \sqrt{[a]} \) gives: \[ 2 = \sqrt{[a]} \] 5. **Squaring Both Sides**: To find \( [a] \), we square both sides: \[ 4 = [a] \] 6. **Understanding the Greatest Integer Function**: The greatest integer function \( [a] \) gives the largest integer less than or equal to \( a \). Therefore, if \( [a] = 4 \), it means: \[ 4 \leq a < 5 \] 7. **Conclusion**: The value of \( a \) must lie in the interval: \[ a \in [4, 5) \] ### Final Answer: Thus, the correct answer is: \[ a \in [4, 5) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.