Home
Class 12
MATHS
Period of the function f(x) =(1)/(3){sin...

Period of the function `f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]}` is (where [.] denotes the greatest integer function )

A

`(pi)/3`

B

`(2pi)/3`

C

`(4pi)/3`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The range of the function f(x) = (1)/(2-sin 3x) is

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The period of the function f(x)=|sin 3x|+| cos 3x| , is

Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))sin[(x)/(2)] , where [.] denotes the greatest integer function, is _________.

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then