Home
Class 12
MATHS
Domain of the function f(x) = sin^(-1) [...

Domain of the function `f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2))` ([.) denotes the greatest integer function) is

A

`[-4,4]`

B

`(-4,4)`

C

`[0,2pi]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Find the domain of the function f(x) = sin^-1 sqrt(x-1)

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then