Home
Class 12
MATHS
f(x)=sqrt((x-1)/(x-2{x})), where {*} den...

`f(x)=sqrt((x-1)/(x-2{x}))`, where `{*}` denotes the fractional part.

A

`(-oo,0)cup(0,2]`

B

`[1,0)`

C

`(-oo,oo)~(0,2]`

D

`(-oo,0)cup(0,1]cup[2,oo)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is

Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fractional part of x. Then, which of the following is/are correct?

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.