Home
Class 12
MATHS
The domain of the function f(x)=sqrt(((s...

The domain of the function `f(x)=sqrt(((sinx-e^(x))(cosx-3)("In"x+2))/((x^(4)-x+1/2)(2x-7)^(30)))` belongs to

A

`[1/(e^(2)),7/2)cup(7/2,oo)`

B

`(-1/2,0)`

C

`(0,1/(e^(5)))`

D

`phi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sqrt{\frac{(\sin x - e^x)(\cos x - 3)(\ln x + 2)}{(x^4 - x + \frac{1}{2})(2x - 7)^{30}}} \] we need to ensure that the expression inside the square root is non-negative, meaning: \[ (\sin x - e^x)(\cos x - 3)(\ln x + 2) \geq 0 \] and \[ (x^4 - x + \frac{1}{2})(2x - 7)^{30} > 0. \] ### Step 1: Analyze \( (2x - 7)^{30} \) The term \( (2x - 7)^{30} \) must be positive. This occurs when: \[ 2x - 7 \neq 0 \] \[ x \neq \frac{7}{2}. \] Thus, \( x \) must be greater than \( \frac{7}{2} \) or less than \( \frac{7}{2} \). ### Step 2: Analyze \( \ln x + 2 \) The term \( \ln x + 2 \) must be non-negative: \[ \ln x + 2 \geq 0 \] \[ \ln x \geq -2 \] \[ x \geq e^{-2} = \frac{1}{e^2}. \] ### Step 3: Analyze \( \sin x - e^x \) For \( \sin x - e^x \), we need to determine when this expression is non-negative. Since \( e^x \) grows faster than \( \sin x \), we can analyze specific values: - For \( x = 0 \): \( \sin(0) - e^0 = 0 - 1 < 0 \). - For \( x = 1 \): \( \sin(1) - e^1 \approx 0.84 - 2.71 < 0 \). - For larger \( x \), \( e^x \) will dominate \( \sin x \). Thus, \( \sin x - e^x \) is negative for \( x > 0 \). ### Step 4: Analyze \( \cos x - 3 \) The term \( \cos x - 3 \) is always negative since \( \cos x \) ranges from -1 to 1. Therefore, \( \cos x - 3 < 0 \) for all \( x \). ### Step 5: Combine the conditions From the analysis, we have: 1. \( \ln x + 2 \geq 0 \) gives \( x \geq \frac{1}{e^2} \). 2. \( 2x - 7 \neq 0 \) gives \( x \neq \frac{7}{2} \). 3. \( \sin x - e^x < 0 \) for \( x > 0 \). 4. \( \cos x - 3 < 0 \) for all \( x \). ### Final Domain Since \( \sin x - e^x \) and \( \cos x - 3 \) are both negative, the product \( (\sin x - e^x)(\cos x - 3) \) is positive. Thus, the only condition we need to satisfy is: \[ \ln x + 2 \geq 0 \text{ and } x \neq \frac{7}{2}. \] This leads us to the final domain: \[ x \in \left[\frac{1}{e^2}, \frac{7}{2}\right) \cup \left(\frac{7}{2}, \infty\right). \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=4-sqrt(x^(2)-9) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

Domain of the function f(x)=sqrt(2-sec^(-1)x) is

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

The domain of the function f(x)=sqrt((x^(2)-8x+12).ln^(2)(x-3)) is

The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) is

The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is

The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is