Home
Class 12
MATHS
Xa n dY are two sets and f: XvecYdot If ...

`Xa n dY` are two sets and `f: XvecYdot` If `{f(c)=y ; csubX ,ysubY}a n d{f^(-1)(d)=x ; dsubY ,xsubX",` then the true statement is `f(f^(-1)(b))=b` (b) `f^(-1)(f(a))=a` `f(f^(-1)(b))=b , bsuby` (d) `f^(-1)(f(a))=a , asubx`

A

`f{f^(-1)(b))=b`

B

`f^(-1)(f(a))=a`

C

`f(f^(-1)(b))=b,bsubsety`

D

`f^(-1)(f(a))=a,asubsetx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

X and Y are two sets and f: X->Y If {f(c)=y; c subX, y subY} and {f^(-1)(d)=x;d subY,x sub X , then the true statement is (a) f(f^(-1)(b))=b (b) f^(-1)(f(a))=a (c) f(f^(-1)(b))=b, b sub y (d) f^(-1)(f(a))=a, a sub x

If f(x)=|(log)_e x| , then (a) f'(1^+)=1 (b) f^'(1^(-))=-1 (c) f'(1)=1 (d) f'(1)=-1

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)=log((1-x)/(1+x)) , show that f(a)+f(b)=f((a+b)/(1+ab))

If f(x)=(x)/(x-1) , then evaluate : (f(a//b))/(f(b//a))

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

Given f(x)=4x^8 , then (a) f'(1/2)=f'(-1/2) (b) f(1/2)=-f'(-1/2) (c) f'(-1/2)=-f'(1/2) (d) f(1/2)=f'(-1/2)

If f(x)=|[0,x-a, x-b], [x+a,0,x-c], [x+b, x+c,0]|,t h e n (a) f(a)=0 (b) f(b)=0 (c) f(0)=0 (d) f(1)=0

A function f: R -> R satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then a. f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these

f(x)=x/(x-1) then (f(a))/(f(a+1)) is equal to a. f(-a) b. f(1//a) c. f(a^2) d. f(-a/(a-1))