Home
Class 12
MATHS
The domain function f(x) = 1/ (sqrt((|si...

The domain function `f(x) = 1/ (sqrt((|sin^-1x|-cos^-1|x|)))` is given by

A

`x in[1/(sqrt2),1]`

B

`x in[-1,-1/(sqrt2))`

C

`x in[-1,-1/(sqrt2))cup(1/(sqrt2),1]`

D

`x in[-1,1]-{1/(sqrt2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{|\sin^{-1} x| - \cos^{-1} |x|}} \), we need to ensure that the expression inside the square root is positive, as the square root of a negative number is not defined in the real number system. Therefore, we need to solve the inequality: \[ |\sin^{-1} x| - \cos^{-1} |x| > 0 \] ### Step 1: Understanding the Functions 1. **Range of \( \sin^{-1} x \)**: The function \( \sin^{-1} x \) is defined for \( x \in [-1, 1] \) and its range is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). 2. **Range of \( \cos^{-1} |x| \)**: The function \( \cos^{-1} |x| \) is also defined for \( |x| \in [0, 1] \) and its range is \( [0, \pi] \). ### Step 2: Analyzing the Inequality We need to analyze the inequality \( |\sin^{-1} x| > \cos^{-1} |x| \). - For \( x \in [0, 1] \): - \( |\sin^{-1} x| = \sin^{-1} x \) - \( \cos^{-1} |x| = \cos^{-1} x \) Thus, the inequality becomes: \[ \sin^{-1} x > \cos^{-1} x \] Using the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we can rewrite the inequality: \[ \sin^{-1} x > \frac{\pi}{2} - \sin^{-1} x \] \[ 2\sin^{-1} x > \frac{\pi}{2} \] \[ \sin^{-1} x > \frac{\pi}{4} \] Now, taking the sine of both sides: \[ x > \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] - For \( x \in [-1, 0] \): - \( |\sin^{-1} x| = -\sin^{-1} x \) - \( \cos^{-1} |x| = \cos^{-1} (-x) = \cos^{-1} |x| \) Thus, the inequality becomes: \[ -\sin^{-1} x > \cos^{-1} (-x) \] Using the same identity: \[ -\sin^{-1} x > \frac{\pi}{2} - \sin^{-1} (-x) \] \[ -\sin^{-1} x > \frac{\pi}{2} + \sin^{-1} x \] This leads to: \[ -2\sin^{-1} x > \frac{\pi}{2} \] This inequality does not hold for any \( x \in [-1, 0] \). ### Step 3: Conclusion From the analysis, we find that \( x \) must be in the intervals where \( x > \frac{1}{\sqrt{2}} \) or \( x < -\frac{1}{\sqrt{2}} \). Thus, the domain of the function \( f(x) \) is: \[ \text{Domain: } (-1, -\frac{1}{\sqrt{2}}) \cup (\frac{1}{\sqrt{2}}, 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(|x|-x) is

The domain of the function f(x)=sqrt(sin x-1) is

The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x) = (1)/(sqrt(4 + 3 sin x)) is :

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

Write the domain of the real function f(x)=1/(sqrt(|x|-x))

The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) is

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

The domain of the function f defined by f(x)=(1)/(sqrt(|x|-x)) is