Home
Class 12
MATHS
If f(x)=abs(1/(abs(absx-2))+1/(abs(absx-...

If `f(x)=abs(1/(abs(absx-2))+1/(abs(absx-3)))` and `g(x)=sin^(-1)(2sqrtx)`, then f(x)=g(x) has

A

no solution

B

less than 2 solutions

C

atleast 1 solution

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( f(x) = g(x) \) where \( f(x) = \left| \frac{1}{| |x| - 2 |} + \frac{1}{| |x| - 3 |} \right| \) and \( g(x) = \sin^{-1}(2\sqrt{x}) \), we will follow these steps: ### Step 1: Determine the domain of \( g(x) \) The function \( g(x) = \sin^{-1}(2\sqrt{x}) \) is defined when the argument \( 2\sqrt{x} \) lies within the range \([-1, 1]\). - This gives us the inequalities: \[ -1 \leq 2\sqrt{x} \leq 1 \] - From \( 2\sqrt{x} \geq 0 \), we have \( x \geq 0 \). - From \( 2\sqrt{x} \leq 1 \), we have \( \sqrt{x} \leq \frac{1}{2} \) which implies \( x \leq \frac{1}{4} \). Thus, the domain of \( g(x) \) is: \[ x \in [0, \frac{1}{4}] \] ### Step 2: Analyze \( f(x) \) Next, we simplify \( f(x) \): \[ f(x) = \frac{1}{| |x| - 2 |} + \frac{1}{| |x| - 3 |} \] Since \( |x| \) is always non-negative, we can analyze the function based on the critical points \( x = 2 \) and \( x = 3 \). - For \( x < 2 \): \[ f(x) = \frac{1}{2 - x} + \frac{1}{3 - x} \] - For \( 2 \leq x < 3 \): \[ f(x) = \frac{1}{x - 2} + \frac{1}{3 - x} \] - For \( x \geq 3 \): \[ f(x) = \frac{1}{x - 2} + \frac{1}{x - 3} \] ### Step 3: Evaluate \( f(x) \) at the endpoints of the domain We will evaluate \( f(x) \) at the endpoints of the domain \( [0, \frac{1}{4}] \): 1. **At \( x = 0 \)**: \[ f(0) = \frac{1}{2 - 0} + \frac{1}{3 - 0} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] 2. **At \( x = \frac{1}{4} \)**: \[ f\left(\frac{1}{4}\right) = \frac{1}{2 - \frac{1}{4}} + \frac{1}{3 - \frac{1}{4}} = \frac{1}{\frac{7}{4}} + \frac{1}{\frac{11}{4}} = \frac{4}{7} + \frac{4}{11} \] To combine these fractions, find a common denominator: \[ \frac{4}{7} + \frac{4}{11} = \frac{4 \cdot 11 + 4 \cdot 7}{77} = \frac{44 + 28}{77} = \frac{72}{77} \] ### Step 4: Compare \( f(x) \) and \( g(x) \) Now, we need to find \( g(0) \) and \( g\left(\frac{1}{4}\right) \): - **At \( x = 0 \)**: \[ g(0) = \sin^{-1}(2 \cdot 0) = 0 \] - **At \( x = \frac{1}{4} \)**: \[ g\left(\frac{1}{4}\right) = \sin^{-1}(2 \cdot \sqrt{\frac{1}{4}}) = \sin^{-1}(1) = \frac{\pi}{2} \] ### Step 5: Analyze the intersection - At \( x = 0 \), \( f(0) = \frac{5}{6} \) and \( g(0) = 0 \). - At \( x = \frac{1}{4} \), \( f\left(\frac{1}{4}\right) = \frac{72}{77} \) and \( g\left(\frac{1}{4}\right) = \frac{\pi}{2} \). Since \( f(x) \) is continuous and decreases from \( \frac{5}{6} \) to \( \frac{72}{77} \) while \( g(x) \) increases from \( 0 \) to \( \frac{\pi}{2} \), by the Intermediate Value Theorem, there is at least one intersection point in the interval \( [0, \frac{1}{4}] \). ### Conclusion Thus, the equation \( f(x) = g(x) \) has at least one solution.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(x-4), then

f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

If fog = abs(sin x) and gof = sin^(2)x then f(x) and g(x) are:

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If g(x)=3x-1 and f(x)=4g(x)+3 . What is f(2)?

If f(x) =(4-x)^2 and g(x) =sqrtx , then (g o f) (x)=

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then