Home
Class 12
MATHS
If a function satisfies the condition f(...

If a function satisfies the condition `f(x+1/x)=x^(2)+1/(x^(2)),xne0`, then domain of f(x) is

A

`[-2,2]`

B

`(-oo,-2]cup[2,oo)`

C

`(0,oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) \) given the condition \( f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \) for \( x \neq 0 \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the equation: \[ f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \] 2. **Rewriting the Right Side**: We can rewrite \( x^2 + \frac{1}{x^2} \) by adding and subtracting 2: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] So, we have: \[ f\left(x + \frac{1}{x}\right) = \left(x + \frac{1}{x}\right)^2 - 2 \] 3. **Defining a New Variable**: Let \( y = x + \frac{1}{x} \). Then, we can express \( f(y) \) as: \[ f(y) = y^2 - 2 \] 4. **Finding the Range of \( y \)**: We need to determine the possible values of \( y \). For positive \( x \): - The minimum value of \( y = x + \frac{1}{x} \) occurs at \( x = 1 \), giving \( y = 2 \). - As \( x \) approaches 0 from the positive side, \( y \) approaches infinity. Thus, for positive \( x \), \( y \geq 2 \). For negative \( x \): - If \( x < 0 \), then \( y = x + \frac{1}{x} \) will yield values less than or equal to -2. - The minimum occurs at \( x = -1 \), giving \( y = -2 \). 5. **Combining the Results**: Therefore, the possible values for \( y \) are: \[ y \leq -2 \quad \text{or} \quad y \geq 2 \] 6. **Determining the Domain of \( f(x) \)**: Since \( f(y) \) is defined for \( y \) values derived above, the domain of \( f(x) \) is: \[ (-\infty, -2] \cup [2, \infty) \] ### Final Answer: The domain of \( f(x) \) is: \[ \text{Domain of } f(x) = (-\infty, -2] \cup [2, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the (a) domain of f(x)i sR (b)domain of f(x)i sR-(-2,2) (c)range of f(x)i s[-2,oo] (d)range of f(x)i s(2,oo)

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1/(x^2)(x!=0) . Then the

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

A function f satisfies the condition f(x)=f'(x)+f''(x)+f'''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is