Home
Class 12
MATHS
f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then...

`f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx`, then f(x) is

A

one-one.

B

onto

C

many-one

D

into

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin x + \cos x \) and determine its range when the domain is restricted to natural numbers. ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with the function: \[ f(x) = \sin x + \cos x \] We can rewrite this using the identity: \[ \sin x + \cos x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right) \] This can be expressed as: \[ f(x) = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \] 2. **Determine the Maximum and Minimum Values**: The sine function oscillates between -1 and 1. Therefore, the maximum and minimum values of \( f(x) \) are: \[ \text{Maximum: } f(x) = \sqrt{2} \cdot 1 = \sqrt{2} \] \[ \text{Minimum: } f(x) = \sqrt{2} \cdot (-1) = -\sqrt{2} \] 3. **Identify the Range**: Thus, the range of \( f(x) \) is: \[ [-\sqrt{2}, \sqrt{2}] \] 4. **Consider the Domain**: The domain of \( f(x) \) is restricted to natural numbers \( \mathbb{N} \). The natural numbers are \( 1, 2, 3, \ldots \). 5. **Evaluate \( f(x) \) at Natural Numbers**: We will evaluate \( f(x) \) at a few natural numbers: - For \( x = 1 \): \[ f(1) = \sin(1) + \cos(1) \approx 0.8415 + 0.5403 \approx 1.3818 \] - For \( x = 2 \): \[ f(2) = \sin(2) + \cos(2) \approx 0.9093 - 0.4161 \approx 0.4932 \] - For \( x = 3 \): \[ f(3) = \sin(3) + \cos(3) \approx 0.1411 - 0.9899 \approx -0.8488 \] 6. **Conclusion**: Since \( f(x) \) takes values in the range \( [-\sqrt{2}, \sqrt{2}] \) and the outputs for natural numbers \( x \) do not cover the entire range, we conclude that \( f(x) \) is not onto. ### Final Answer: The function \( f(x) = \sin x + \cos x \) is a one-one function but not onto when the domain is restricted to natural numbers.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)) is

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=sqrt(1-sin2x), then f'(x) equals

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

If f(x)=sqrt((x-sinx)/(x+cos^2x)) , then lim (x->oo)f(x) is

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)