Home
Class 12
MATHS
Let E1a n dE2, respectively, be two elli...

Let `E_1a n dE_2,` respectively, be two ellipses `(x^2)/(a^2)+y^2=1,a n dx^2+(y^2)/(a^2)=1` (where `a` is a parameter). Then the locus of the points of intersection of the ellipses `E_1a n dE_2` is a set of curves comprising two straight lines (b) one straight line one circle (d) one parabola

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of two prependicular tangents of the ellipse x^(2)/9+y^(2)/4=1 is

The locus of point of intersection of tangents to an ellipse x^2/a^2+y^2/b^2=1 at two points the sum of whose eccentric angles is constant is

The locus of point of intersection of tangents to an ellipse x^2/a^2+y^2/b^2=1 at two points the sum of whose eccentric angles is constant is

The radius of the circle passing through the points of intersection of ellipse x^2/a^2+y^2/b^2=1 and x^2-y^2 = 0 is

If e is eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (where,a lt b), then

The locus of the point of intersection of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which meet at right , is

If the tangents to the parabola y^2=4a x intersect the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at Aa n dB , then find the locus of the point of intersection of the tangents at Aa n dBdot

If a tangent to the parabola y^2 = 4ax intersects the x^2/a^2+y^2/b^2= 1 at A and B , then the locus of the point of intersection of tangents at A and B to the ellipse is

If the lines joining the origin to the intersection of the line y=nx+2 and the curve x^2+y^2=1 are at right angles, then the value of n^2 is

The ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and the straight line y=mx+c intersect in real points only if: