Home
Class 12
MATHS
If the line y=x+sqrt(3) touches the ell...

If the line `y=x+sqrt(3)` touches the ellipse `(x^(2))/(4)+(y^(2))/(1)=1` then the point of contact is

A

`((2)/(sqrt(3)),(1)/(sqrt(3)))`

B

`((-4)/(sqrt(3)),(1)/(sqrt(3)))`

C

`((-2)/(sqrt(3)),(-11)/(sqrt(3)))`

D

none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line 3 x +4y =sqrt7 touches the ellipse 3x^2 +4y^2 = 1, then the point of contact is

Prove that the straight line y = x + a sqrt(2) touches the circle x^(2) + y^(2) - a^(2)=0 Find the point of contact.

Show that the line x + 2y - 4 = 0 touches the ellipse 3x^(2) + 4y^(2) = 12 also find the point of contact.

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff

Show that the line y= x + sqrt(5/6 touches the ellipse 2x^2 + 3y^2 = 1 . Find the coordinates of the point of contact.

If (sqrt(3))b x+a y=2a b touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then the eccentric angle of the point of contact is pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If the line 2x+sqrt6y=2 touches the hyperbola x^2-2y^2=4 , then the point of contact is

The focal chord of the parabola y^(2)=32x touches the ellipse (x^(2))/(4^(2))+(y^(2))/(2^(2))=1 in the first quadrant at the point

Show that the line 3x+4y +20=0 touches the circle x^(2) + y^(2) =16 and find the point of contact