Home
Class 12
MATHS
Find the locus of point P such that the ...

Find the locus of point `P` such that the tangents drawn from it to the given ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` meet the coordinate axes at concyclic points.

Text Solution

Verified by Experts

The correct Answer is:
`x^(2)-y^(2)=a^(2)-b^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 form a triangle of constant area with the coordinate axes.

The locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 forms a triangle of constant area with the coordinate axes is a straight line (b) a hyperbola an ellipse (d) a circle

The locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 forms a triangle of constant area with the coordinate axes is a straight line (b) a hyperbola an ellipse (d) a circle

The locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 forms a triangle of constant area with the coordinate axes is (a) straight line (b) a hyperbola (c) an ellipse (d) a circle

The locus of the point of intersection of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which meet at right , is

Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1.

Find the equations of the tangent drawn to the ellipse (x^(2))/(3) + y^(2) =1 from the point (2, -1 )

Find the equations of the tangents drawn from the point (2, 3) to the ellipse 9x^2+16 y^2=144.

Find the equations of the tangents drawn from the point (2, 3) to the ellipse 9x^2+16 y^2=144.

Find the equations of the tangents drawn from the point (2, 3) to the ellipse 9x^2+16 y^2=144.