Home
Class 12
MATHS
The eccentricity of the conic x=3((1-t^...

The eccentricity of the conic `x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2))` is

A

`(2)/(3)`

B

`(2sqrt(2))/(3)`

C

`(3)/(2)`

D

`(3)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the conic given by the parametric equations \( x = 3 \frac{1 - t^2}{1 + t^2} \) and \( y = \frac{2t}{1 + t^2} \), we can follow these steps: ### Step 1: Rewrite the equations We start with the equations: \[ x = 3 \frac{1 - t^2}{1 + t^2} \] \[ y = \frac{2t}{1 + t^2} \] ### Step 2: Substitute \( t = \tan\left(\frac{\theta}{2}\right) \) To simplify the equations, we can use the Weierstrass substitution, where we let \( t = \tan\left(\frac{\theta}{2}\right) \). ### Step 3: Transform the equations Using the substitution \( t = \tan\left(\frac{\theta}{2}\right) \), we have: \[ 1 - t^2 = 1 - \tan^2\left(\frac{\theta}{2}\right) = \frac{\cos\theta}{\cos^2\left(\frac{\theta}{2}\right)} \] \[ 1 + t^2 = 1 + \tan^2\left(\frac{\theta}{2}\right) = \frac{1}{\cos^2\left(\frac{\theta}{2}\right)} \] Thus, we can rewrite: \[ x = 3 \frac{1 - t^2}{1 + t^2} = 3 \cos\theta \] \[ y = \frac{2t}{1 + t^2} = 2 \sin\theta \] ### Step 4: Express in terms of sine and cosine Now we have: \[ \frac{x}{3} = \cos\theta \] \[ \frac{y}{2} = \sin\theta \] ### Step 5: Use the Pythagorean identity Using the identity \( \sin^2\theta + \cos^2\theta = 1 \): \[ \left(\frac{y}{2}\right)^2 + \left(\frac{x}{3}\right)^2 = 1 \] This simplifies to: \[ \frac{y^2}{4} + \frac{x^2}{9} = 1 \] ### Step 6: Identify the standard form of the ellipse This equation represents an ellipse in standard form: \[ \frac{x^2}{9} + \frac{y^2}{4} = 1 \] Here, \( a^2 = 9 \) and \( b^2 = 4 \). ### Step 7: Calculate the eccentricity The eccentricity \( e \) of an ellipse is given by the formula: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values: \[ e = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{9 - 4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Final Answer Thus, the eccentricity of the conic is: \[ \frac{\sqrt{5}}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

The parametric equations x=(2a(1-t^(2)))/(1+t^(2)) and y=(4at)/(1+t^(2)) represents a circle whose radius is

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),y=(2t)/(1+t^(2)) is

The area (in sq. units) enclosed between the curve x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)), AA t in R and the line y=x+1 above the line is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)