Home
Class 12
MATHS
A normal is drawn to the ellipse (x^(2))...

A normal is drawn to the ellipse `(x^(2))/(9)+y^(2)=1` at the point `(3cos theta, sin theta)` where `0lt theta lt(pi)/(2)`. If N is the foot of the perpendicular from the origin O to the normal such that ON = 2, then `theta` is equal to

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`(pi)/(8)`

D

`(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta equal to

sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of theta

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

Solve 2 sin theta cos theta = cos theta. ( 0^(@) < theta lt 360^(@)).

Solve : 5cos2theta+2cos^2(theta/2)+1=0,-pi lt theta lt pi

tangents are drawn to x^2+y^2=a^2 at the points A(acos theta, a sin theta) and B(a cos (theta +pi/3), a sin (theta +pi/3)) Locus of intersection of these tangents is