Home
Class 12
MATHS
If the imaginery part of (z-3)/(e^(ithet...

If the imaginery part of `(z-3)/(e^(itheta))+(e^(itheta))/(z-3)` is zero, then `z` can lie on

A

a straight line parallel to x-axis

B

a parabola

C

a circle of radius 1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real part of e^e^(itheta)

If I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0 , then find the locus of z

If z=re^(itheta) then |e^(iz)| is equal to:

If (3)/(2+e^(itheta)) =ax + iby , then the locous of P(x,y) will represent

Show that e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.

Show that e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.

The amplitude of e^(e^-(itheta)) , where theta in R and i = sqrt(-1) , is

Let P(e^(itheta_1)), Q(e^(itheta_2)) and R(e^(itheta_3)) be the vertices of a triangle PQR in the Argand Plane. Theorthocenter of the triangle PQR is

Let |z_(1)|=3, |z_(2)|=2 and z_(1)+z_(2)+z_(3)=3+4i . If the real part of (z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1))) is equal to 4, then |z_(3)| is equal to (where, i^(2)=-1 )

let z1, z2,z3 be vertices of triangle ABC in an anticlockwise order and angle ACB = theta then z_2-z_3 = (CB)/(CA)(z_1-z3) e^itheta . let p point on a circle with op diameter 2 points Q & R taken on a circle such that angle POQ & QOR= theta if O be origin and PQR are complex no. z1, z2, z3 respectively then z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta