Home
Class 12
MATHS
One vertex of a triangle of maximum area...

One vertex of a triangle of maximum area that can be inscribed in the curve `|z-2i|=2` is `2+2idot` Then the remaining vertices is/are `-1+i(2+sqrt(3))` `-1-i(2+sqrt(3))` `-1+i(2-sqrt(3))` (d) `-1-i(2-sqrt(3))`

A

`-1+i(2 + sqrt3)`

B

`-1-I(2 + sqrt(3))`

C

`-1+i(2 -sqrt3)`

D

`-1-i(2-sqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

one vertex of the triangle of maximum area that can be inscribed in the curve |z-2i|=2 is 2+2i, then remaining vertices are

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2

Evaluate: sqrt(-2+2sqrt(3)i)

Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(100)=-1

If z=i log(2-sqrt(3)) then cosz

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

Express each one of the following with rational denominator: (i) (sqrt(3)+\ 1)/(2sqrt(2)-\ sqrt(3)) (ii) (6-4sqrt(2))/(6+4sqrt(2))

A rectangle is inscribed in an equilateral triangle of side length 2a units. The maximum area of this rectangle can be (a) sqrt(3)a^2 (b) (sqrt(3)a^2)/4 a^2 (d) (sqrt(3)a^2)/2