Home
Class 12
MATHS
Prove by mathematical induction that sum...

Prove by mathematical induction that `sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n3^r^n C_r=4^n .

Prove that sum_(r=0)^n^n C_r3^r=4^n

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)