Home
Class 12
MATHS
Find the theta such that (3+2i sin theta...

Find the `theta` such that `(3+2i sin theta)/(1-2 isin theta)` is
(a) real

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \theta \) such that the expression \[ \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \] is real, we need to ensure that the imaginary part of this complex number is equal to zero. ### Step-by-step Solution: **Step 1: Identify the imaginary part.** The expression is in the form of a complex number \( \frac{a + bi}{c + di} \). We need to find the imaginary part of this fraction. **Step 2: Multiply by the conjugate.** To simplify, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(3 + 2i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)} \] **Step 3: Simplify the denominator.** The denominator becomes: \[ (1 - 2i \sin \theta)(1 + 2i \sin \theta) = 1^2 - (2i \sin \theta)^2 = 1 + 4 \sin^2 \theta \] **Step 4: Simplify the numerator.** Now, simplify the numerator: \[ (3 + 2i \sin \theta)(1 + 2i \sin \theta) = 3 + 6i \sin \theta + 2i \sin \theta + 4(-\sin^2 \theta) = 3 - 4 \sin^2 \theta + 8i \sin \theta \] **Step 5: Combine the results.** Putting it all together, we have: \[ \frac{(3 - 4 \sin^2 \theta) + 8i \sin \theta}{1 + 4 \sin^2 \theta} \] **Step 6: Identify the imaginary part.** The imaginary part of this expression is: \[ \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} \] **Step 7: Set the imaginary part to zero.** For the expression to be real, we set the imaginary part to zero: \[ 8 \sin \theta = 0 \] **Step 8: Solve for \( \theta \).** This implies: \[ \sin \theta = 0 \] The general solution for \( \sin \theta = 0 \) is: \[ \theta = n\pi \quad \text{where } n \text{ is an integer.} \] ### Final Answer: The values of \( \theta \) such that \( \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \) is real are: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find real theta such that (3+2i\ sintheta)/(1-2i\ sintheta) is purely real.

Find real value of theta for which (3+2i sin theta)/(1-2i sin theta) is purely real.

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is purely imaginary } Then the sum of the elements in A is

sin^(3)theta + sin theta - sin theta cos^(2)theta =

The real value of theta for which the expression (1 + icos theta)/(1 - 2i cos theta) is real number is

Let f_(n)(theta)= 2 sin . (theta)/(2) sin. (3theta)/(2) + 2 sin.(theta)/(2) sin. (5theta)/(2) + 2sin. (theta)/(2) sin. (7 theta)/(2) + ... + 2 sin (2 n+1) (theta)/(2), n in N , then which of the following is/are correct ?

The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely real are

Prove that : (sin theta + 2 sin 3theta + sin 5theta)/(sin 3theta + 2 sin 5theta + sin 7theta) = (sin 3theta)/(sin 5theta)

If sec^2 theta (1 + sin theta) (1 — sin theta) = k , then find the value of k.