Home
Class 12
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `x^2-2x+4=0`, find `alpha^(n)+beta^(n)` for
(a) `n=3k, k in N`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( \alpha^n + \beta^n \) where \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - 2x + 4 = 0 \) for \( n = 3k \) where \( k \in \mathbb{N} \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) We can use the quadratic formula to find the roots of the equation: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2 \), and \( c = 4 \). Calculating the discriminant: \[ b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot 4 = 4 - 16 = -12 \] Now substituting back into the quadratic formula: \[ x = \frac{2 \pm \sqrt{-12}}{2} = \frac{2 \pm 2i\sqrt{3}}{2} = 1 \pm i\sqrt{3} \] Thus, the roots are: \[ \alpha = 1 + i\sqrt{3}, \quad \beta = 1 - i\sqrt{3} \] ### Step 2: Express \( \alpha \) and \( \beta \) in polar form We can express \( \alpha \) and \( \beta \) in polar form. The modulus \( r \) is given by: \[ r = \sqrt{(1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can write: \[ \alpha = 2 \left( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \right) = 2 e^{i\frac{\pi}{3}} \] \[ \beta = 2 \left( \cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right) \right) = 2 e^{-i\frac{\pi}{3}} \] ### Step 3: Calculate \( \alpha^n + \beta^n \) Using the polar forms: \[ \alpha^n = (2 e^{i\frac{\pi}{3}})^n = 2^n e^{i\frac{n\pi}{3}} \] \[ \beta^n = (2 e^{-i\frac{\pi}{3}})^n = 2^n e^{-i\frac{n\pi}{3}} \] Now, adding these: \[ \alpha^n + \beta^n = 2^n \left( e^{i\frac{n\pi}{3}} + e^{-i\frac{n\pi}{3}} \right) = 2^n \cdot 2 \cos\left(\frac{n\pi}{3}\right) = 2^{n+1} \cos\left(\frac{n\pi}{3}\right) \] ### Step 4: Substitute \( n = 3k \) Now substituting \( n = 3k \): \[ \alpha^{3k} + \beta^{3k} = 2^{3k + 1} \cos\left(\frac{3k\pi}{3}\right) = 2^{3k + 1} \cos(k\pi) \] Since \( \cos(k\pi) = (-1)^k \): \[ \alpha^{3k} + \beta^{3k} = 2^{3k + 1} (-1)^k \] ### Final Answer Thus, the final result is: \[ \alpha^{3k} + \beta^{3k} = 2^{3k + 1} (-1)^k \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

Let alpha and beta be the roots of the equation x^2-6x-2=0 If a_n=alpha^n-beta^n for ngt=0 then find the value of (a_10-2a_8)/(2a_9)

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n then evaluate |[3, 1+s_1, +s_2] , [1+s_1, 1+s_2, 1+s_3] , [1+s_2, 1+s_3, 1+s_4]|