Home
Class 12
MATHS
Find the complex number z with maximum a...

Find the complex number z with maximum and minimum possible values of `|z|` satisfying
(a) `|z + (1)/(z) | =1`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the complex number \( z \) with maximum and minimum possible values of \( |z| \) satisfying the equation \[ |z + \frac{1}{z}| = 1, \] we will follow these steps: ### Step 1: Rewrite the equation Let \( z = re^{i\theta} \), where \( r = |z| \). Then, we can express \( \frac{1}{z} \) as \( \frac{1}{re^{i\theta}} = \frac{1}{r} e^{-i\theta} \). The equation becomes: \[ |re^{i\theta} + \frac{1}{r} e^{-i\theta}| = 1. \] ### Step 2: Simplify the expression Now, we can rewrite the left-hand side: \[ |re^{i\theta} + \frac{1}{r} e^{-i\theta}| = |r e^{i\theta} + \frac{1}{r} e^{-i\theta}|. \] Using the property of modulus, we have: \[ |z + \frac{1}{z}| = |r e^{i\theta} + \frac{1}{r} e^{-i\theta}| = |r + \frac{1}{r} e^{-2i\theta}|. \] ### Step 3: Apply the triangle inequality Using the triangle inequality, we know: \[ |z + \frac{1}{z}| \leq |z| + |\frac{1}{z}| = r + \frac{1}{r}. \] From the equation \( |z + \frac{1}{z}| = 1 \), we can write: \[ 1 \leq r + \frac{1}{r}. \] ### Step 4: Solve the inequality The inequality \( r + \frac{1}{r} \geq 1 \) holds for \( r > 0 \). To find the minimum and maximum values of \( r \), we can rearrange this to: \[ r^2 - r + 1 \geq 0. \] ### Step 5: Use the quadratic formula The roots of the equation \( r^2 - r - 1 = 0 \) can be found using the quadratic formula: \[ r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{1 \pm \sqrt{5}}{2}. \] ### Step 6: Determine the maximum and minimum values Thus, we have two values: 1. \( r_{\text{min}} = \frac{1 - \sqrt{5}}{2} \) 2. \( r_{\text{max}} = \frac{1 + \sqrt{5}}{2} \) ### Step 7: Conclusion Since \( r \) must be positive, we discard \( r_{\text{min}} \) as it is negative. Therefore, the minimum value of \( |z| \) is: \[ |z|_{\text{min}} = \frac{1 - \sqrt{5}}{2} \quad \text{(not valid, so we take the next valid value)} \] The maximum value of \( |z| \) is: \[ |z|_{\text{max}} = \frac{1 + \sqrt{5}}{2}. \] ### Final Result Thus, the maximum and minimum possible values of \( |z| \) satisfying the condition are: - Minimum: \( |z|_{\text{min}} = 1 - \frac{\sqrt{5}}{2} \) (not valid, take \( 0 \)) - Maximum: \( |z|_{\text{max}} = \frac{1 + \sqrt{5}}{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of |z| satisfying |z+(1)/(z)|=2

If |z+(4)/(z)|=2, find the maximum and minimum values of |z|.

For any complex number z find the minimum value of |z|+|z-2i|

If the complex number z is such that |z-1|le1 and |z-2|=1 find the maximum possible value |z|^(2)

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is

For any complex number z, maximum value of |z|-|z-1| is

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

For any complex number z , the minimum value of |z|+|z-1|