Home
Class 12
MATHS
If w=alpha+ibeta, where beta!=0 and z!=1...

If `w=alpha+ibeta,` where `beta!=0` and `z!=1` , satisfies the condition that `((w- bar w z)/(1-z))` is a purely real, then the set of values of `z` is `|z|=1,z!=2` (b) `|z|=1a n dz!=1` (c)`z=bar z ` (d) None of these

A

`{z : |z| =1}`

B

`{ z:z=bar(z) }`

C

`{ z : z ne 1}`

D

`{ z : |z| = 1, z ne1}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If w=z/[z-(1/3)i] and |w|=1, then find the locus of z

If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If z satisfies |z+1| lt |z-2| , then w=3z+2+i

Find the locus of z if omega= (z)/(z- (1)/(3)i), |omega| =1

If z satisfies |z-1| lt |z +3| " then " omega = 2 z + 3 -i satisfies

If z=x+i y and w=(1-i z)//(z-i) and |w| = 1 , then show that z is purely real.

If z=x + yi and omega= (1-zi)/(z-i) show that |omega|=1 rArr z is purely real