Home
Class 12
MATHS
If theta(i)in[0,pi//6],i=1,2,3,4,5,and s...

If `theta_(i)in[0,pi//6],i=1,2,3,4,5,and sintheta_(1)z^(4)+sin theta_(2)z^(3)+sintheta_(3)z^(2)+sintheta_(4)z+sintheta_(5)=2,` show that `(3)/(4)lt|Z|lt1.`

A

`|z| gt 3//4`

B

`|z| lt 1//2`

C

`1//2 lt `

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

Evaluate: int(costheta)(d theta)/((2+sintheta)(3+4sintheta)\

3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(6)theta)=?

Show : (1+tan^2theta)(1+sintheta)(1-sintheta) = 1

Prove that sintheta+s in3theta+sin5theta++sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

If 0 lt theta_(2) lt theta_(1) lt pi/4, cos (theta_(1) + theta_(2)) = 3/5 and cos(theta_(1)-theta_(2))=4/5 , then sintheta_(1) sintheta_(2) equal to

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Show that there is no complex number such that |z|le1/2 and z^(n)sin theta_(0)+z^(n-1)sintheta_(2)+....+zsintheta_(n-1)+ sintheta_(n)=2 where theta,theta_(1),theta_(2),……,theta_(n-1), theta_(n) are reals and n in Z^(+) .