Home
Class 12
MATHS
For positive integers n1,n2 the value of...

For positive integers `n_1,n_2` the value of expression `(1+i)^n_1+(1+i^3)^n_1+91+i^5)^n_2+(1+i^7)^n_2, here i=sqrt(-1)` is real number, if and only if (A) `n_1=n_2+1` (B) `n_1=n_2-1` (C) `n_1=n_2` (D) `n_1ge,n_2gt0`

A

`n_1=n_2 +1`

B

`n_1 = n_2 -1`

C

`n_1 = n_2`

D

`n_1 gt 0, n_2 gt 0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

For a positive integer n , find the value of (1-i)^(n) (1 - 1/i)^(n)

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

The number of real negavitve terms in the binomial expansion of (1 + ix)^(4n-2) , n in N , n gt 0 , I = sqrt(-1) , is

If n in NN , then find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) .

The arithmetic mean of 1,2,3,...n is (a) (n+1)/2 (b) (n-1)/2 (c) n/2 (d) n/2+1