Home
Class 12
MATHS
If n is a positive integer but not a mul...

If n is a positive integer but not a multiple of 3 and `z = -1 + i sqrt( 3) ` then `(z^(2n) + 2^(n)z^(n) + 2^(2n))` is equal to :

A

`2^(2n)`

B

`0`

C

`3. 2^(4n)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If omega is a cube root of unity and n is a positive integer which is not a multiple of 3, then show that (1 + omega^(n) + omega^(2n))= 0

If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1.)

If n is a positive integer then find the number of terms in the expansion of (x+y-2z)^(n)

If n is a positive integer then find the number of terms in the expansion of (x+y-2z)^(n)

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :