Home
Class 12
MATHS
If z1ne-z2 and |z1+z2|=|1/z1 + 1/z2| th...

If `z_1ne-z_2` and `|z_1+z_2|=|1/z_1 + 1/z_2|` then :

A

for `k =1` locus of z is straight line

B

for `k cancel(in) {1,0}z` lies on a circle

C

for `k=0` z represents a point

D

for `k=1,z` lies on the perpendicular bisector of the segment joining `(z_2)/(z_1) and (z_2)/(z_1)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

If for the complex numbers z_1 and z_2 , |z_1+z_2|=|z_1-z_2| , then Arg(z_1)-Arg(z_2) is equal to

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

Which of the following is correct for any tow complex numbers z_1a n dz_2? (a) |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|

If A (z_1), B (z_2) and C (z_3) are three points in the argand plane where |z_1 +z_2|=||z_1-z_2| and |(1-i)z_1+iz_3|=|z_1|+|z_3|-z_1| , where i = sqrt-1 then

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|