Home
Class 12
MATHS
|z(1) + z(2) | = |z(1)| + |z(2)| is pos...

`|z_(1) + z_(2) | = |z_(1)| + |z_(2)| ` is possible , if :

A

0

B

`pi`

C

`2pi`

D

`3pi`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1 + z_2| = |z_1| + |z_2| is possible if :

Consider the complex numbers z_(1) and z_(2) Satisfying the relation |z_(1)+z_(2)|^(2)=|z_(1)|^(2) + |z_(2)|^(2) Possible difference between the argument of z_(1) and z_(2) is

Consider the complex numbers z_(1) and z_(2) Satisfying the relation |z_(1)+z_(2)|^(2)=|z_(1)| + |z_(2)|^(2) One of the possible argument of complex number i(z_(1)//z_(2))

State true or false for the following. Let z_(1) " and " z_(2) be two complex numbers such that |z_(2) + z_(2)| = |z_(1) | + |z_(2)| , then arg (z_(1) - z_(2)) = 0

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

It is given the complex numbers z_(1) and z_(2) , |z_(1)| =2 and |z_(2)| =3 . If the included angle of their corresponding vectors is 60^(@) , then find value of |(z_(1) +z_(2))/(z_(1) -z_(2))|

Consider the complex numbers z_(1) and z_(2) Satisfying the relation |z_(1)+z_(2)|^(2)=|z_(1)|^2 + |z_(2)|^(2) Complex number z_(1)/z_(2) is

Consider the complex numbers z_(1) and z_(2) Satisfying the relation |z_(1)+z_(2)|^(2)=|z_(1)| + |z_(2)|^(2) Complex number z_(1)//z_(2) is

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

Let |(z_(1) - 2z_(2))//(2-z_(1)z_(2))|= 1 and |z_(2)| ne 1 , where z_(1) and z_(2) are complex numbers. shown that |z_(1)| = 2