Home
Class 12
MATHS
If omega and omega^(2) are the nonreal ...

If `omega ` and `omega^(2)` are the nonreal cube roots of unity and `[1//(a + omega)] + [1//(b+ omega)] + (1//(c + omega)] = 2 omega^(2)` and `[1//(a + omega^(2))] + [1//(b+ omega ^(2))]+ [(1//(c+omega^(2))] + [1//(c+ omega^(2))] = 2 omega `, then find the value of `[1//(a + 1) ] + [1//(b +1)]+ [1//(c + 1)]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^(2) are three cube roots of unity, prove that (1)/(1 + omega) + (1)/(1+ omega^(2))=1

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

if omegaa n domega^2 are the nonreal cube roots of unity and [1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2 and [1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^ , then find the value of [1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega^(2))^(4)= omega

If 1, omega, omega^(2) are three cube roots of unity, prove that omega^(28) + omega^(29) + 1= 0

If 1, omega, omega^(2) are the three cube roots of unity, then simplify: (3 + 5omega + 3omega^(2))^(2) (1 + 2omega + omega^(2))

If 1, omega and omega^(2) are the cube roots of unity, prove that (a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)

If 1, omega, omega^(2) are the cube roots of unity, prove that (1 + omega)^(3)-(1 + omega^(2))^(3)=0

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega - omega^(2)) (1- omega + omega^(2))=4