Home
Class 12
MATHS
In a n- sided regular polygon, the proba...

In a `n-` sided regular polygon, the probability that the two diagonal chosen at random will intersect inside the polygon is: (a.)`(2^n C_2)/(^(^(n C_(2-n)))C_2)` (b.) `("^(n(n-1))C_2)/(^(^(n C_(2-n)))C_2)` (c.) `(^n C_4)/(^(^(n C_2-n))C_2)` (d.) none of these

A

`(2.^(n)C_(2))/(.^(n)C_(2-n)C_(2))`

B

`(2(n-1)(n-2))/(n(n-5))`

C

`(.^(n)C_(4))/(.^(n)C_(2-n)C_(2))`

D

`(2n(n-5))/((n-1)(n-2))`.

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

In a n- sided regular polygon, the probability that the two diagonal chosen at random will intersect inside the polygon is (2^n C_2)/(^(^(n C_(2-n)))C_2) b. (^(n(n-1))C_2)/(^(^(n C_(2-n)))C_2) c. (^n C_4)/(^(^(n C_(2-n)))C_2) d. none of these

(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2) equals

Find n if (^(2n)C_2)/(^(n)C_2)= 12:1

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

""^((2n + 1))C_0 - ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 - ……+""^((2n + 1))C_(2n) =

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .