Home
Class 12
MATHS
Prove that: |-2a a+b a+c b+a-2bb+cc+a c+...

Prove that: `|-2a a+b a+c b+a-2bb+cc+a c+b-2c|=4(a+b)(b+c)(c+a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Prove that: |(-2a , a+b, a+c),( b+a,-2b, b+c),( c+a , c+b,-2c)|=4(a+b)(b+c)(c+a)

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .

Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]

Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]