Home
Class 12
MATHS
Factorize the following |[3,a+b+c,a^3+b^...

Factorize the following `|[3,a+b+c,a^3+b^3+c^3],[a+b+c,a^2+b^2+c^2,a^4+b^4+c^4],[a^2+b^2+c^2,a^3+b^3+c^3,a^5+b^5+c^5]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize the following |3a+b+c a^3+b^3+c^3a+b+c a^2+b^2+c^2a^4+b^4+c^4a^2+b^2+c^2a^3+b^3+c^3a^5+b^5+c^5|

Evaluate the following: |[a,b,c],[a^2, b^2, c^2],[a^3, b^3, c^3]|

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Factorise : 2ab^(2) c - 2a + 3b^(3) c - 3b - 4b^(2) c^(2) + 4c

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

a^2b^3\ X\ 2a b^2 is equal to: (a) 2a^3b^4 (b) 2a^3b^5 (c) 2a b (d) a^3b^5

Multiply : 3a b^2c^3\ b y\ 5a^3b^2c (ii) 4x^2y z\ b y-3/2x^2y z^2

Add the following algebraic expressions : 2a - 3b + 4c , -3a + 2b - 5c , 7a - c and 3b + 6c