Home
Class 12
MATHS
Let a >0,d >-0. Find the value of the de...

Let `a >0,d >-0.` Find the value of the determinant `|1/a1/(a(a+d))1/((a+d)(a+2d))1/((a+d))1/((a+d)(a+2d))1/((a+2d)(a+3d))1/((a+2d))1/((a+2d)(a+3d))1/((a+3d)(a+4d))|`

Promotional Banner

Similar Questions

Explore conceptually related problems

let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d)),1/( (a + d) (a +2d))],[1/(a+ d),1/( (a+ d) (a + 2d)), 1/((a+2d) (a + 3d))],[1/(a +2d), 1/((a + 2d) (a +3d)), 1/((a+3d) (a + 4d))]|

If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),2a +d)| = 0 , then

If the sum to infinity of the series 1- ( 1+d) (1)/(3) +(1+ 2d) (1)/(9) -( 1+3d) .(1)/( 27) + ………" is" (9)/(16) , find d.

Find the matrix A such that |A|=2\ a n d\ a d j(A)=[(2, 2, 0),( 2, 5, 1),( 0, 1, 1)]

Find the values of a,b,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2d):}]+[{:(4,a+b),(c+d,3):}] .

The rate of a reaction is expressed in different ways as follows: +(1)/(2)(d[C])/(dt)=-(1)/(2)(d[D])/(dt)=+(1)/(3)(d[A])/(dt)=-(d[B])/(dt) the reaction is

The rate of a reaction is expressed in different ways as follows: +(1)/(2)(d[C])/(dt)=-(1)/(3)(d[D])/(dt)=+(1)/(4)(d[A])/(dt)=-(d[B])/(dt) the reaction is

For the chemical reaction N_(2)(g)+3H_(2)(g)hArr2NH_(3)(g) The correct option is: (a) 3(d[H_(2)])/(dt)=2(d[NH_(3)])/(dt) (b) -(1)/(3)(d[H_(2)])/(dt)=-(1)/(2)(d[NH_(3)])/(dt) (c) -(d[N_(2)])/(dt)=2(d[NH_(3)])/(dt) (d) -(d[N_(2)])/(dt)=(1)/(2)(d[NH_(3)])/(dt)

If a_1,a_2,a_3, a_n are in arithmetic progression with common difference d , then evaluate the following expression: tan{tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a^2a_3))+tan^(-1)(d/(1+a_3a_4))++tan^(-1)(d/(1+a_(n-1)a_n))}

If asinx+bcos(x+theta)+bcos(x-theta)=d , then the minimum value of |costheta| is equal to (a) 1/(2|b|)sqrt(d^2-a^2) (b) 1/(2|a|)sqrt(d^2-a^2) (c) 1/(2|d|)sqrt(d^2-a^2) (d) none of these