Home
Class 12
MATHS
If f(x)={:abs((x,x^2,x^3),(1,2x,3x^2),(0...

If `f(x)={:abs((x,x^2,x^3),(1,2x,3x^2),(0,2,6x)):}`, then find `f'(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`6x^2`
Promotional Banner

Similar Questions

Explore conceptually related problems

112. If f(x)= [[x,x^2,x^3],[1,2x,3x^2],[0,2,6x]] find f'(x)

If f(x)={{:(x+3 : x lt 3),(3x^(2)+1:xge3):} , then find int_(2)^(5) f(x) dx .

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

If f(x)={(sin(x^(2)-3x),xle0 6x+5x^(2),xgt0 then at x=0, f(x) is?

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0], then find |[f(-2)]| (where [] is the greatest integer function).

Let f(x)=f_1(x)-2f_2 (x) , where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)