Home
Class 12
MATHS
If |[a^2+lambda^2,ab+clambda,ca-blambda]...

If `|[a^2+lambda^2,ab+clambda,ca-blambda],[ab-clambda,b^2+lambda^2,bc+aλ],[ca+blambda,bc-alambda,c^2+lambda^2]|``|[λ,c,-b],[-c,λ,a] ,[b,-a,λ]|`=`(1+a^2+b^2+c^2)^3` , then he value of `lambda` is `8` b. `27` c. `1` d. `-1`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to :

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

If a,b,c are in AP and (a+2b-c)(2b+c-a)(c+a-b)=lambdaabc , then lambda is

If a,b, c, lambda in N , then the least possible value of |(a^(2)+lambda, ab,ac),(ba,b^(2)+lambda,bc),(ca, cb, c^(2)+lambda)| is