Home
Class 12
MATHS
If p(x) ,q(x) and r(x) are three polynom...

If p(x) ,q(x) and r(x) are three polynomials of degree 2, then `|{:(p(x),q(x),r(x)),(p'(x),q'(x),r'(x)),(p''(x),q''(x),r''(x)):}|` is ………….of x .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \[ D = \begin{vmatrix} p(x) & q(x) & r(x) \\ p'(x) & q'(x) & r'(x) \\ p''(x) & q''(x) & r''(x) \end{vmatrix} \] where \( p(x), q(x), r(x) \) are polynomials of degree 2. ### Step 1: Write the polynomials Since \( p(x), q(x), r(x) \) are polynomials of degree 2, we can express them in the general form: \[ p(x) = a_2 x^2 + a_1 x + a_0 \] \[ q(x) = b_2 x^2 + b_1 x + b_0 \] \[ r(x) = c_2 x^2 + c_1 x + c_0 \] ### Step 2: Compute the derivatives Next, we compute the first and second derivatives of these polynomials: \[ p'(x) = 2a_2 x + a_1 \] \[ q'(x) = 2b_2 x + b_1 \] \[ r'(x) = 2c_2 x + c_1 \] \[ p''(x) = 2a_2 \] \[ q''(x) = 2b_2 \] \[ r''(x) = 2c_2 \] ### Step 3: Substitute into the determinant Now we can substitute these expressions into the determinant: \[ D = \begin{vmatrix} a_2 x^2 + a_1 x + a_0 & b_2 x^2 + b_1 x + b_0 & c_2 x^2 + c_1 x + c_0 \\ 2a_2 x + a_1 & 2b_2 x + b_1 & 2c_2 x + c_1 \\ 2a_2 & 2b_2 & 2c_2 \end{vmatrix} \] ### Step 4: Factor out common terms We can factor out \( x^2 \) from the first row, \( 2x \) from the second row, and \( 2 \) from the third row: \[ D = x^2 \cdot 2x \cdot 2 \cdot \begin{vmatrix} a_2 & b_2 & c_2 \\ 2a_2 & 2b_2 & 2c_2 \\ 2a_2 & 2b_2 & 2c_2 \end{vmatrix} \] ### Step 5: Analyze the determinant Notice that the second and third rows of the determinant are identical: \[ \begin{vmatrix} a_2 & b_2 & c_2 \\ 2a_2 & 2b_2 & 2c_2 \\ 2a_2 & 2b_2 & 2c_2 \end{vmatrix} \] Since two rows of the determinant are the same, the value of the determinant is 0. ### Conclusion Thus, we conclude that: \[ D = 0 \] ### Final Answer The determinant is independent of \( x \) and equals 0. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If p (x) = x ^(2) -4x+8 and q 9x)=x-3, what is the value of (q (p (5)))/(p (q (5))) ?

Give example of polynomials p(x),g(x),q(x) and r(x) which satisfy the division algorithm and (i) degp(x)=deg q(x) (ii) deg q(x)=deg r(x) (iii) deg r(x)=0

Give an example of polynomials f(x),\ \ g(x),\ \ q(x) and r(x) satisfying f(x)=g(x)dotq(x)+r(x) , where degree r(x)=0 .

Let u(x) and v(x) are differentiable function such that (u(x))/(v(x))=6 . If (u'(x))/(v'(x))=p and ((u(x))/(v(x)))'=q then value of (p+q)/(p-q) is equal to

Divide p(x) by g(x) and find the quotient q(x) and remainder r(x). p(x)=x^(4)+2x^(2)+3, g(x)=x^(2)+1

If p , r , s gt 0 then lim_(x rarr oo)((p^(1/x)+q^(1/x)+r^(1/x)+s^(1/x))/4)^(3x)

If f(x) and g(x) are of degrees 7 and 4 respectively such that f(x)= g(x) q(x)+ r(x) then find possible degrees of q(x) and r(x) .

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

The value of lim_(xto0)(p^(x)-q^(x))/(r^(x)-s^(x)) is

intP(x)e^(kx)dx=Q(x)e^(4x)+C , where P(x) is polynomial of degree n and Q(x) is a polynomial of degree 7. Then the value of n+7+k+lim_(xrarrinfty)(P(x))/(Q(x)) is :