Home
Class 12
MATHS
If A,B and C are the angles of a triangl...

If A,B and C are the angles of a triangle and
`|{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}|` =0
then `Delta` ABC must be .

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

In a triangleABC , if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0 , then prove that triangleABC is an isosceles triangle.

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

Show that: sinAsin(B-C)+sinB sin(C-A)+sinCsin(A-B)=0

If A, B, C are the angles of a triangle ABC and if cosA=(sinB)/(2sinC) , show that the triangle is isosceles.

If A ,Ba n dC are the vetices of a triangle A B C , then prove sine rule a/(sinA)=b/(sinB)=c/(sinC)dot

If A ,Ba n dC are the vetices of a triangle A B C , then prove sine rule a/(sinA)=b/(sinB)=c/(sinC)dot