Home
Class 12
MATHS
Let g(x)=|(f(x+alpha), f(x+2a), f(x+3alp...

Let `g(x)=|(f(x+alpha), f(x+2a), f(x+3alpha)), f(alpha), f(2alpha), f(3alpha),(f\'(alpha),(f\'(2alpha), f\'(3alpha))|`, where alpha is a constant then `Lt_(xrarr0(g(x))/x=` (A) 0 (B) 1 (C) -1 (D) none of these

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{g(x)}{x} \] where \[ g(x) = \begin{vmatrix} f(x+\alpha) & f(x+2\alpha) & f(x+3\alpha) \\ f(\alpha) & f(2\alpha) & f(3\alpha) \\ f'(\alpha) & f'(2\alpha) & f'(3\alpha) \end{vmatrix} \] ### Step 1: Evaluate \( g(0) \) First, we need to find \( g(0) \): \[ g(0) = \begin{vmatrix} f(\alpha) & f(2\alpha) & f(3\alpha) \\ f(\alpha) & f(2\alpha) & f(3\alpha) \\ f'(\alpha) & f'(2\alpha) & f'(3\alpha) \end{vmatrix} \] ### Step 2: Identify the determinant Notice that the first two rows of the determinant are identical: \[ \begin{vmatrix} f(\alpha) & f(2\alpha) & f(3\alpha) \\ f(\alpha) & f(2\alpha) & f(3\alpha) \\ f'(\alpha) & f'(2\alpha) & f'(3\alpha) \end{vmatrix} = 0 \] Since the determinant of a matrix with two identical rows is zero, we have: \[ g(0) = 0 \] ### Step 3: Apply L'Hôpital's Rule Since \( g(0) = 0 \), we have an indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{g(x)}{x} = \lim_{x \to 0} g'(x) \] ### Step 4: Differentiate \( g(x) \) To differentiate \( g(x) \), we use the property of determinants. The derivative of a determinant with respect to \( x \) is given by differentiating each element of the rows with respect to \( x \): \[ g'(x) = \begin{vmatrix} f'(x+\alpha) & f'(x+2\alpha) & f'(x+3\alpha) \\ 0 & 0 & 0 \\ f'(\alpha) & f'(2\alpha) & f'(3\alpha) \end{vmatrix} \] ### Step 5: Evaluate \( g'(0) \) Evaluating this at \( x = 0 \): \[ g'(0) = \begin{vmatrix} f'(\alpha) & f'(2\alpha) & f'(3\alpha) \\ 0 & 0 & 0 \\ f'(\alpha) & f'(2\alpha) & f'(3\alpha) \end{vmatrix} \] Again, the first row is zero, leading to: \[ g'(0) = 0 \] ### Step 6: Final Limit Evaluation Thus, we have: \[ \lim_{x \to 0} \frac{g(x)}{x} = g'(0) = 0 \] ### Conclusion The final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|, where c is constant, then find lim_(xrarr0) (g(x))/(x).

"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|, where c is constant, then find lim_(xrarr0) (g(x))/(x).

If f(x) = alphax^(n) prove that alpha = (f'(1))/n

If f(x) is a polynomial such that (alpha+1)f(alpha)-alpha=0AA alpha epsilon Nuu{0}, alpha le n , then

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

Let f(x) =(alphax)/(x+1) Then the value of alpha for which f(f(x) = x is

If alpha is root of equation f(x)=0 then the value of (alpha+ 1/alpha)^2+(alpha^2+ 1/alpha^2)^2+(alpha^3+1/alpha^3)+………+(alpha^6+ 1/alpha^6)^2 is (A) 18 (B) 54 (C) 6 (D) 12

If f(alpha)=f(beta) and n in N , then the value of int_alpha^beta (g(f(x)))^n g\'(f(x))*f\'(x)dx= (A) 1 (B) 0 (C) (beta^(n+1)-alpha^(n+1))/(n+1) (D) none of these