Home
Class 12
MATHS
If alpha, beta, gamma are roots of the e...

If `alpha`, `beta`, `gamma` are roots of the equation `x^(2)(px+q)=r(x+1)`, then the value of determinant `|{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}|` is

A

`alpha,beta,gamma`

B

`1+1/alpha+1/beta+1/gamma`

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .