Home
Class 12
MATHS
If the expression |{:(x^2+x+3,1,4),(2x^4...

If the expression `|{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}|` is equal to `ax^4+bx^3+cx^2+dx+e` , then the value of e is equal to

A

zero

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we will follow the steps below: Given the determinant: \[ D = \begin{vmatrix} x^2 + x + 3 & 1 & 4 \\ 2x^4 + x^3 + 2x + 1 & 2 & 3 \\ x^2 + x & 1 & 1 \end{vmatrix} \] ### Step 1: Identify the constant terms in each row We need to extract the constant terms from each polynomial in the first column of the determinant. - From the first row, the constant term is **3**. - From the second row, the constant term is **1**. - From the third row, the constant term is **0** (since \(x^2 + x\) has no constant term). ### Step 2: Set up the determinant with constant terms Now we can simplify the determinant by focusing on the constant terms: \[ D = \begin{vmatrix} 3 & 1 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant We will calculate the determinant using the formula for a \(3 \times 3\) determinant: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \(a, b, c\) are the elements of the first row, and \(d, e, f, g, h, i\) are the elements of the second and third rows. Substituting the values: \[ D = 3 \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \] Calculating each of the \(2 \times 2\) determinants: 1. \(\begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1 - 3 \cdot 1) = 2 - 3 = -1\) 2. \(\begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} = (1 \cdot 1 - 3 \cdot 0) = 1 - 0 = 1\) 3. \(\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = (1 \cdot 1 - 2 \cdot 0) = 1 - 0 = 1\) Now substituting these back into the determinant calculation: \[ D = 3(-1) - 1(1) + 4(1) \] \[ D = -3 - 1 + 4 \] \[ D = 0 \] ### Conclusion Since the determinant \(D\) is equal to \(0\), and we are given that \(D = ax^4 + bx^3 + cx^2 + dx + e\), we can conclude that the constant term \(e\) is equal to \(0\). Thus, the value of \(e\) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

If (x-1)^3 is a factor of x^4+ax^3+bx^2+cx-1=0 then the other factor is

If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then

Let |{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax^(4)+Bx^(3)+Cx^(2)+Dx+E the value of 5A+4B+3C+2D+E is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

Lt_(x rarr1) (x^(3)+3x-4)/(2x^(2) + x-3) is equal to

If lim_(xrarr oo) (1+(a)/(x)-(4)/(x^2))^(2x)=e^3 , the a is equal to

If (x+1) is a factor of 2x^(3)+ax^(2)+2bx+1 , then find the value of a and b given that 2a-3b=4.