Home
Class 12
MATHS
The number of distinct real roots of |(s...

The number of distinct real roots of `|(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0` in the interval `-(pi)/4 le x le (pi)/4` is

A

0

B

2

C

1

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le t (pi)/4 is

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le t (pi)/4 is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x le 2 pi , is

The number of distinct real roots of the equation sqrt(sin x)-(1)/(sqrt(sin x))=cos x("where" 0le x le 2pi) is

Number of solutions (s) of the equation (sin x)/(cos 3x) +(sin 3x)/(cos 9x)+(sin 9x)/(cos 27 x)=0 in the interval (0, pi/4) is __________.

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=0 in the interval (0,pi/4) is____________