Home
Class 12
MATHS
The value of f(pi/6) where f(theta)=|{:(...

The value of `f(pi/6)` where `f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

If f(theta)=|(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0)| ,there f(pi/3)+f((2pi)/3)+f(pi)+f((4pi)/3)++f((npi)/3) is equal to (a) n (b) (n(n+1))/2 (c) n^2+2n (d) 2n^2-n

Simplify: costheta[costhetasintheta-sinthetacostheta]+sintheta[sintheta-costhetacosthetasintheta]

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

Simplify the following : cos theta [{:(costheta,-sintheta ),(sintheta,costheta ):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta

Evaluate: intcos2thetaln((costheta+sintheta)/(costheta-sin theta))d theta