Home
Class 12
MATHS
In a triangleABC, if |[1,1,1][1+sinA,1+s...

In a `triangleABC`, if `|[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0`, then prove that `triangleABC` is an isosceles triangle.

A

equilateral or isosceles

B

equilateral or right angled

C

right angled or isosceles

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}| =0 then Delta ABC must be .

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

In triangle A B C ,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In a DeltaABC, sin A sinB sinC is

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

In a triangle ABC if sinA+sinB+sinC = 3^(3/2)/2 prove that the triangle is equilateral.