Home
Class 12
MATHS
Use properties of determinants to solve ...

Use properties of determinants to solve for x: `|{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0`

A

0

B

a+b+c

C

`-(a+b+c)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

Using properties of determinants, solve for x:|[a+x, a-x, a-x],[ a-x, a+x, a-x],[ a-x, a-x, a+x]|=0

Using properties of determinants, solve for x:|[a+x, a-x, a-x], [a-x, a+x, a-x], [a-x, a-x ,a+x]|=0

Using properties of determinant, find the value of x: |{:(x+a, a^(2), a^(3)), (x+b, b^(2), b^(3)), (x+c, c^(2), c^(3)):}|=0

Solve the following determinant equation: |[x+a, b, c], [c, x+b, a], [a ,b, x+c]|=0

Solve the equation |{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

Using the property of determinants and without expanding, prove that: |[0,a,-b],[-a,0,-c],[ b, c,0]|=0

Using the property of determinants and without expanding, prove that: |0a-b-a0-c b c0|=0

Using the property of determinants and without expanding, prove that: |1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0