Home
Class 12
MATHS
if p+q+r=0 =a +b+c then the value of ...

if `p+q+r=0 =a +b+c` then the value of the determinant
`|{:(pa,,qb,,rc),(qc,,ra,,pb),(rb,,pc,,qa):}|` is

A

`abc|{:(p,q,r),(r,p,q),(q,r,p):}|`

B

`pqr|{:(a,b,c),(c,a,b),(b,c,a):}|`

C

`(a^3+b^3+c^3)(p^3+q^3+r^3)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,ra,pb),(rb,pc,qa):}| equals

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a G.P., then the value of the determinant |(log a,p,1),(log b,q,1),(log c,r,1)| , is

Without expanding the determinant prove that: |(0, p-q, p-r), (q-p,0, q-r),(r-p, r-q, 0)|=0

Prove that the value of each the following determinants is zero: |[a-b,b-c,c-a],[ x-y, y-z, z-x],[ p-q, q-r ,r-p]|

If p ,q ,r are in A.P. then value of determinant |[a^2+2^(n+1)+2p, b^2+2^(n+2)+3q, c^2+p], [2^n+p, 2^(n+1), 2q], [a^2+2^n+p, b^2+2^(n+1), c^2-r]| is (a) 0 (b) Independent from a , b , c (c) a^2b^2c^2-2^n (d) Independent from n

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

If p+q+r=0 and |(pa,qb,rc),(qc,ra,pb),(rb,pc,qa)| = lambda |(a,b,c),(c,a,b),(b,c,a)| then lambda =

If a , b and c b respectively the pth , qth and rth terms of an A.P. prove that a(q-r) +b(r-p) +c (p-q) =0