Home
Class 12
MATHS
Simply |{:(,a,b,c),(,a^(2),b^(2),c^(2)),...

Simply `|{:(,a,b,c),(,a^(2),b^(2),c^(2)),(,bc,ca,ab):}|`

A

(a-b)(b-c)(c-a)

B

(a-b)(b-c)(c-a)(a+b+c)

C

(a-b)(b-c)(c-a)(ab+bc+ca)

D

(a-b)(b-c)(c-a)abc

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

Without expanding determinant at any stage evaluate |(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|

If |{:(a,b,a),(b,c,1),(c,a,1):}|=2010 and if |{:(c-a,c-b,ab),(a-b,a-c,bc),(b-c,b-a,ca):}|-|{:(c-a,c-b,c^(2)),(a-b,a-c,a^(2)),(b-c,b-a,b^(2)):}|=p , then the number of positive divisors of p is

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Prove the identities: |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,bc,,a^(2)+b^(2)):}|=4a^2b^2c^2

Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a^(2)+b^(2),ab):}|=-(a-b)(b-c)(c-a)(a+b+c)(a^(2)+b^(2)+c^(2))

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is: