Home
Class 12
MATHS
if x ne 0 , y ne 0 ,z ne 0 " and " |{...

if `x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0` then
`x^(-1) +y^(-1) +z^(-1)` is equal to

A

`pm""m`

B

`pm1`

C

0

D

`m^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0 , then x^(-1)+y^(-1)+z^(-1) is equal to a.1 b.-1 c.-3 d. none of these

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x , y , z are different from zero and |[1+x,1 ,1], [1, 1+y,1], [1, 1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0, then xyz =

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}| =(x-y)(y-z)(z-x)(x+y+z)

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]